

2023 10th OpenFOAM Korea Users' Community Conference

물리정보 인공지능-OpenFOAM 결합 CFD 가속 연구

전준구

Assistant Professor, NINE Lab,

Graduate School of Integrated Energy-AI

Jeonbuk National University

Numerical Investigation for Nature & Energy Lab.

My research overview

[1] J. Jeon et al., *Ann. Nucl. Energy*, 2018.
[2] J. Jeon et al., *Nucl. Eng. Technol.*, 2019.
[3] J. Jeon et al., *Energies*, 2020.
[4] J. Jeon et al., *Int. J. Heat Mass. Transf.*, 2021

[5] J. Jeon et al., *Nucl. Eng. Technol.*, 2019.
[6] J. Jeon et al., *Nucl. Eng. Technol.*, 2021.
[7] J. Jeon et al., *Int. J. Energy Res.*, 2022.
[8] J. Jeon et al., arXiv preprint arXiv:2206.06817

My research overview

Problem 1: incorrect interpolation (insufficient data)

Problem 2: incorrect extrapolation (biased data)

"Almost all ML research faces these two problems"

"Motivation for physics-informed machine learning"

9

Contents

① Background

- 2 Recent advances in ML-PDEs
- ③ Our idea: RePIT
- (4) Results and conclusion
- (5) Summary and conclusions

Achilles heel of CFD

① Unrealistic computation costs (especially for turbulent, reacting, multiphase flows)

- my experiences...

Hydrogen explosion simulation (~100h/1s)

"Nuclear reactor severe accident simulation: 72 h"

Neural networks: universal nonlinear function approximator

- The deep neural network algorithms were inspired by biological neural network .
- Below figure shows **the feed-forward algorithms in two-layer network model**. :*I*-dimensional input matrix and *J* unit number of a hidden layer
- The back-propagation allows to optimize parameter values.
 - Eq. (4) shows the representative loss function (mean square error)

$$X_{j} = \sum_{i} W_{i,j}^{1} X_{i} + b_{j}^{1}$$
(1)

$$Z = \sum_{j} W_{j}^{2} Y_{j} + b^{2} = \sum_{j} \left(W_{j}^{2} \left(\sum_{i} W_{i,j}^{1} X_{i} + b_{j}^{1} \right) \right) + b^{2}$$
(2)

$$Z = \sum_{j} \left(W_j^2 \cdot \operatorname{relu}(Y_j) \right) + b^2 = \sum_{j} \left(W_j^2 \cdot \operatorname{relu}(\sum_{i} W_{i,j}^1 X_i + b_j^1) \right) + b^2$$
(3)

$$J(\theta) = \frac{1}{n} \sum_{k=1}^{n} \left(Z^k - Z^k(\theta) \right)^2 \tag{4}$$

$$\frac{\partial J}{\partial W^{1}} = \left(\frac{\partial J}{\partial Y} \cdot \frac{\partial Y}{\partial W^{1}}\right)^{\mathsf{T}} = \left(\frac{\partial J}{\partial Y} \cdot X^{\mathsf{T}}\right)^{\mathsf{T}}$$
$$= \left(W^{2} \cdot \left((W^{2})^{\mathsf{T}} \cdot \operatorname{relu}\left((W^{1})^{\mathsf{T}}X + b^{1}\right) + b^{2} - Z\right) \cdot X^{\mathsf{T}}\right)^{\mathsf{T}}$$
(5)

Recent advances in ML-PDEs

- Actually, it includes more broad ideas!!!
- We aims to enhance accuracy & efficiency of NNs.

Prof. George E. Karniadakis

Physics-informed neural networks (PINNs) (M. Raissi, 2019)

9

Network design

Note: $\hat{u} = [u, v, p, \phi]$, x = [x, y], θ : weights/biases, λ : unknown PDE parameters, w_i , i = 1, ..., 4: weights

(Cai, 2022)

DeepONet (L. Lu, 2021)

input: u(x), y

output: G(u)(y)

Example: antiderivative operator

$$\frac{ds(x)}{dx} = u(x), s(x) = s_0 + \int_0^x u(\tau) d\tau,$$

$$G: u(x) \to s(x),$$

Finite volume method network (FVMN)

For best performance, we should develop a CFD fitted-network model!

- Idea of CNN: image has the stationarity of statistic

Finite volume method network (FVMN)

Physics-informed loss function

2.

FVMN model

Prevention "non-physical overfitting"

$$X_t^t = \left[x_{i,j}^t, x_{i-1,j}^t, x_{i+1,j}^t, x_{i,j-1}^t, x_{i,j+1}^t\right]^{\mathsf{T}} \text{ where } X_t^t \in \mathbb{R}^5$$
$$Z_d^t = \left[\left(\frac{\delta x}{\delta t}\right)_{i,j}^{t+1}\right] \text{ where } Z_d^t \in \mathbb{R}$$

Finite volume method network (FVMN)

Improved performance of FVMN

Our idea: hybrid approach

• **Re**sidual-based **p**hysics-informed **t**ransfer learning (RePIT) strategy

Our idea: hybrid approach

- **Re**sidual-based **p**hysics-informed **t**ransfer learning (RePIT) strategy
 - Residual fluctuations also commonly occur in traditional CFD solvers.

Our idea: hybrid approach

9

- **Re**sidual-based **p**hysics-informed **t**ransfer learning (RePIT) strategy
 - Why OpenFOAM?

"OpenFOAM is very powerful to combine with ML algorithms"

"Tremendous ML opensource codes"

argonne-lcf/ **PythonFOAM**

In-situ data analyses and machine learning with OpenFOAM and Python

R 1 ① 1 ☆ 144 % 53 Contributor Issue Stars Forks

18/22

Results and conclusion

• Single training approach (training data: initial 3 timesteps)

Results and conclusion

$$\begin{aligned} \frac{\rho^* - \rho_{ML}^t}{\delta t} + \nabla \cdot (\rho \boldsymbol{u})^* &= \varepsilon \\ \frac{(\rho \mathbf{u})^* - (\rho \mathbf{u})_{ML}^t}{\delta t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u})^* + \nabla p^* - \rho^* g - \nabla \cdot \left(\mu_{eff} (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^T)\right)^* + \nabla \left(\frac{2}{3} \mu_{eff} (\nabla \cdot \mathbf{u})\right)^* &= \varepsilon \\ \frac{(\rho h)^* - (\rho h)_{ML}^t}{\delta t} + \nabla \cdot (\rho \boldsymbol{u} h)^* + \frac{(\rho K)^* - (\rho K)_{ML}^t}{\delta t} + \nabla \cdot (\rho \boldsymbol{u} K)^* - \frac{p^* - p_{ML}^t}{\delta t} - \nabla \cdot \left(\alpha_{eff} \nabla h\right)^* - \rho^* \boldsymbol{u}^* \cdot g &= \varepsilon \end{aligned}$$

Results and conclusion

- Natural convection simulation by OpenFOAM
- laminar flow, buoyantPimpleFoam
- unified square grids (200x200).
- x 11 acceleration for 1 time series prediction

Summary and conclusions

"enlighten: to give knowledge or understanding"

Thank you for listening!

jgjeon41@jbnu.ac.kr

What is artificial intelligence?

What is machine learning?

- artificial intelligence vs machine learning (neural networks)
 - 'Artificial intelligence': the theory and development of computer systems able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages
 - 'Machine learning': the use and development of computer systems that are able to learn and adapt without following explicit instructions, by using algorithms and statistical models to analyze and draw inferences from patterns in data.

✓ Simple example

What is deep learning?

PINNs

https://github.com/maziarraissi/PINNs/bl ob/master/main/continuous_time_inferen ce%20(Schrodinger)/Schrodinger.py

× Data (150 points)

• Example: Shrodinger equation

 $ih_t + 0.5h_{xx} + |h|^2 h = 0, x \in [-5, 5], t \in [0, \pi/2],$ $h(0, x) = 2 \operatorname{sech}(x),$ h(t, -5) = h(t, 5), $h_{x}(t, -5) = h_{x}(t, 5)$. x0 $MSE = MSE_0 + MSE_b + MSE_f$, where -50.00.20.4 $MSE_0 = \frac{1}{N_0} \sum_{i=1}^{N_0} |h(0, x_0^i) - h_0^i|^2,$ $MSE_{b} = \frac{1}{N_{b}} \sum_{i=1}^{N_{b}} \left(|h^{i}(t_{b}^{i}, -5) - h^{i}(t_{b}^{i}, 5)|^{2} + |h_{x}^{i}(t_{b}^{i}, -5) - h_{x}^{i}(t_{b}^{i}, 5)|^{2} \right),$

and

$$MSE_f = \frac{1}{N_f} \sum_{i=1}^{N_f} |f(t_f^i, x_f^i)|^2$$

 $\frac{1}{0.6} + \frac{1}{0.8} + \frac{1}{1.0} + \frac{1}{1.2} + \frac{1}{1.4} + \frac{1}{t} = 0.5$

|h(t,x)|

(Cai, 2022)

PINNs

- Issues in PINNs
 - 1. Long-time integration
 - 2. Complex problems
 - 3. Sampling methods
 - 4. Training dynamics

and much more ...

PINN vs FEM

	PINN	FEM
Basis function	NN (nonlinear)	Piecewise polynomial (linear)
Parameters	Weights and biases	Point values
Training points	Mesh-free	Mesh points
Governing equation	Loss function	Algebraic system
Parameter solver	Gradient-based optimization	Linear solver
		(arXiv.1907.04502)

DeepONet

https://github.com/lululxvi/deeponet/blob/master/s rc/deeponet_pde.py

> Output function G(u)at random location y

 x_m

G

• Example: antiderivative operator and diffusion-reaction PDE

$$\frac{ds(x)}{dx} = u(x), s(x) = s_0 + \int_0^x u(\tau) d\tau,$$

$$G: u(x) \to s(x),$$

$$\frac{\partial s}{\partial t} = D \frac{\partial^2 s}{\partial x^2} + ks^2 + u(x), x \in (0,1), t \in (0,1]$$

$$G: u(x) \to s(x, t),$$
input: $u(x), y$
output: $G(u)(y)$
Training data
Input function u
at fixed sensors x_1, \dots, x_m

$$\frac{G}{x_1 x_2}$$

DeepONet

- Example: Navier-stokes equation
 - * For the ODEs and PDEs, the input function of the operators could be the boundary

conditions, initial conditions or forcing terms (Lu, 2021).

Input: upstream disturbance output: downstream perturbation field

PINN vs DeepONet

• PINN

(+) easy to implement, applicable to various domains and equations

(+) unsupervised learning

(-) predict only a single PDE instance

(-) hard to impose BCs

• DeepONet

(+) predict multiple PDE instances

- (+) can use modern DNN architecture
- (-) supervised (in general), low accuracy on unseen data

(-) hard to impose BCs

(Hong, 2023)