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My research overview

• Numerical simulation of severe accident scenarios [1].

• Turbulent gas behavior at pipe rupture accident [2].

2018 2020 20222016

• Identification of the hydrogen flame extinction mechanism with CFD simulation [3, 4].

• Analytical modeling and validation of hydrogen flammability limit model [5, 6].

• Development of hydrogen combustion risk prediction code for containment building

(flammability, flame acceleration, DDT evaluation).

[1] J. Jeon et al., Ann. Nucl. Energy, 2018.

[2] J. Jeon et al., Nucl. Eng. Technol., 2019.

[3] J. Jeon et al., Energies, 2020.

[4] J. Jeon et al., Int. J. Heat Mass. Transf.,2021

“The need for hydrogen-LFL model”

• Development of a new concept of network model by introducing CFD principles [7].

• Validation of the model using non-reacting and reacting flows.

• Physics-informed transfer learning strategy to accelerate unsteady simulations [8].

“Need to accelerate CFD simulations” • Control of 2D Rayleigh–Benard 

convection with multi-agent 

reinforcement learning

• Application of G-CNNs for 

symmetrical invariant

[5] J. Jeon et al., Nucl. Eng. Technol., 2019.

[6] J. Jeon et al., Nucl. Eng. Technol., 2021.

[7] J. Jeon et al., Int. J. Energy Res., 2022.

[8] J. Jeon et al., arXiv preprint arXiv:2206.06817

AI application for nuclear safety

“Flow/heat control with DRL”

2023

• RANS turbulent modeling 

with LES data

• Reinforcement learning 

approach to overcome scale 

differences
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My research overview

Energy safety Energy efficiency

Fluid mechanics...

CFD

...

Digital twin

State-of-the art AI techniques

Missing parts 
(ex. turbulent models, 
computation speed)

System 
Engineering

System 
code

...

Missing parts 
(ex. accident progress 
prediction)

• Computational fluid dynamics (CFD)

• System code (NPPs)
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ML (linear regression)

True

Problem 1: incorrect interpolation (insufficient data)
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Problem 2: incorrect extrapolation (biased data)

ML

True

“Almost all ML research faces these two problems”
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Dataset

ML

Our physics-knowledge
𝑦 = sin(𝑎𝑥 + 𝑏)

“Motivation for physics-informed machine learning”
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① Unrealistic computation costs (especially for turbulent, reacting, multiphase flows)

- my experiences…

- scaling studies for near-wall region

Achilles heel of CFD

Hydrogen explosion simulation (~100h/1s)

(Tolias et al., 2018)

(Jeon et al., 2022)

~𝛰(𝑅𝑒 Τ13 7) ~𝛰(𝑅𝑒)

Based on LES

“Nuclear reactor severe accident simulation: 72 h”

(S.T. Bose, 2019)
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Neural networks: universal nonlinear function approximator

- The deep neural network algorithms were inspired by biological neural network .

- Below figure shows the feed-forward algorithms in two-layer network model.
:𝐼-dimensional input matrix and 𝐽 unit number of a hidden layer

- The back-propagation allows to optimize parameter values.
- Eq. (4) shows the representative loss function (mean square error)

𝑌𝑗 = σ𝑖 𝑊𝑖,𝑗
1 𝑋𝑖 + 𝑏𝑗

1 (1)

𝑍 = σ𝑗 𝑊𝑗
2 ∙ relu 𝑌𝑗 + 𝑏2 = σ𝑗 𝑊𝑗

2 ∙ relu σ𝑖 𝑊𝑖,𝑗
1 𝑋𝑖 + 𝑏𝑗

1 + 𝑏2 (3)

𝐽 𝜃 =
1

𝑛
σ𝑘=1

𝑛 𝑍𝑘 − 𝑍𝑘 𝜃
2

(4)

𝜕𝐽
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=

𝜕𝐽

𝜕𝑌
∙

𝜕𝑌

𝜕𝑊1

⊺

=
𝜕𝐽

𝜕𝑌
∙ 𝑋⊺

⊺

= 𝑊2 ∙ 𝑊2 ⊺ ∙ relu 𝑊1 ⊺𝑋 + 𝑏1 + 𝑏2 − 𝑍 ∙ 𝑋⊺
⊺

(5)

𝑍 = σ𝑗 𝑊𝑗
2𝑌𝑗 + 𝑏2 = σ𝑗 𝑊𝑗

2 σ𝑖 𝑊𝑖,𝑗
1 𝑋𝑖 + 𝑏𝑗

1 + 𝑏2 (2) 
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Recent advances in ML-PDEs

• Actually, it includes more broad ideas!!!
• We aims to enhance accuracy & efficiency of NNs.

Prof. George E. Karniadakis

Nuclear engineering: 
Multiphysics applications
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Physics-informed neural networks (PINNs)

(Cai, 2022)

• Network design

(M. Raissi, 2019)
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DeepONet

𝑑𝑠(𝑥)

𝑑𝑥
= 𝑢 𝑥 , 𝑠 𝑥 = 𝑠0 + න

0

𝑥

𝑢(𝜏) 𝑑𝜏,

• Example: antiderivative operator

𝑮: 𝒖 𝒙 → 𝒔 𝒙 ,

input: 𝒖 𝒙 , 𝒚

output: 𝑮(𝒖)(𝒚)

(L. Lu, 2021)

“They are awesome, but  have limitations
(1) error accumulation (2) changes in geometry/b.c”.
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Finite volume method network (FVMN)

For best performance, we should develop a CFD fitted-network model! 

- Idea of CNN: image has the stationarity of statistic 

(Jeon, 2022)

Convolutional Neural Network

100,000 images 
vs 10 images

CNN: 1 image = 1 dataset
Our: 1 grid = 1 dataset

CFD acceleration!!
- Idea of our network model: all CFD nodes has the same rules

All nodes must be satisfied with near nodes: 
𝝏𝝆

𝝏𝒕
+

𝝏

𝝏𝒙
𝝆𝒗𝒙 +

𝝏

𝝏𝒚
𝝆𝒗𝒚 = 𝟎

0 ∆𝒕 𝟐∆𝒕 𝟑∆𝒕 𝑻

training prediction
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(Karniadakis, 2021)

Finite volume method network (FVMN)

<Training loss>
(previous): 𝐿𝑚𝑠𝑒 =

1

𝑛
σ𝑘=1

𝑛 ൯𝑢𝑘 − 𝑢𝑘(𝜃
2

(a): 𝐿𝑚𝑠𝑒 =
1

𝑛
σ𝑘=1

𝑛 ൰
𝛿𝑢

𝛿𝑡

𝑘
−

𝛿𝑢

𝛿𝑡
(𝜃)

𝑘
2

(b): 𝐿𝑚𝑠𝑒 = 𝑤1 ∙
1

𝑛
σ𝑘=1

𝑛 ൰
𝛿𝑢

𝛿𝑡

𝑘
−

𝛿𝑢

𝛿𝑡
(𝜃)

𝑘
2

+ 𝑤2 ∙
1

𝑛
σ𝑗=1

2 σ𝑘=1
𝑛 𝜀𝑗

𝑘 2

*εc: continuity residual, εm: Navier − Stokes residual

1. Improve synchronization of FVM method and NNs

2. Prevention “non-physical overfitting”(Jeon, 2022)

Physics-informed loss function

d 𝐮

d𝑡
+ 𝛻 ∙ 𝐮 ⊗ 𝐮 − 𝛻 ∙ 𝜈𝛻𝐮 + 𝛻𝑝 = 𝜀

𝑋𝑡
𝑡 = 𝑥𝑖,𝑗

𝑡 , 𝑥𝑖−1,𝑗
𝑡 , 𝑥𝑖+1,𝑗

𝑡 , 𝑥𝑖,𝑗−1
𝑡 , 𝑥𝑖,𝑗+1

𝑡 ⊺
where 𝑋𝑡

𝑡 ∈ 𝑅5

𝑍𝑑
𝑡 =

𝛿𝑥

𝛿𝑡 𝑖,𝑗

𝑡+1
where 𝑍𝑑

𝑡 ∈ 𝑅

FVMN model
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Finite volume method network (FVMN)

• Improved performance of FVMN
• Improved network performance

• Reduced residuals in prediction time series

• Still error growing…
2) by FVM architecture

3) by loss function
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Our idea: hybrid approach

• Residual-based physics-informed transfer learning (RePIT) strategy

Car: AI
Repairman: CFD

CFD: OpenFoam
AI: TensorFlow

(Jeon, 2022)d 𝐮

d𝑡
+ 𝛻 ∙ 𝐮 ⊗ 𝐮 − 𝛻 ∙ 𝜈𝛻𝐮 + 𝛻𝑝 = 𝜺
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Our idea: hybrid approach

• Residual-based physics-informed transfer learning (RePIT) strategy

- Residual fluctuations also commonly occur in traditional CFD solvers.
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Our idea: hybrid approach

• Residual-based physics-informed transfer learning (RePIT) strategy

• Why OpenFOAM?

Commercial CFD NNs Commercial CFD
Truncation error Truncation error

OpenFOAM OpenFOAMNNs

Unified framework

“OpenFOAM is very powerful
to combine with ML algorithms”

“Tremendous ML opensource codes” 18/22



Results and conclusion

• Single training approach (training data: initial 3 timesteps)

Residual divergence problem:
residual of continuity equation

19/22



Results and conclusion

• Feasibility study of RePIT strategy

CFD

𝜌∗−𝜌𝑀𝐿
𝑡

𝛿𝑡
+ ∇ ∙ 𝜌𝒖 ∗ = 𝜀

𝜌𝐮 ∗− 𝜌𝐮 𝑀𝑳
𝑡

𝛿𝑡
+ 𝛻 ∙ 𝜌𝒖𝒖 ∗ + 𝛻𝑝∗ − 𝜌∗𝑔 − 𝛻 ∙ 𝜇𝑒𝑓𝑓 ∇𝑢 + ∇𝑢𝑇

∗
+ 𝛻

2

3
𝜇𝑒𝑓𝑓 𝛻 ∙ 𝐮

∗

= 𝜀

𝜌ℎ ∗− 𝜌ℎ 𝑀𝐿
𝑡

𝛿𝑡
+ 𝛻 ∙ 𝜌𝒖ℎ ∗ +

𝜌𝐾 ∗− 𝜌𝐾 𝑀𝐿
𝑡

𝛿𝑡
+ 𝛻 ∙ 𝜌𝒖𝐾 ∗ −

𝑝∗−𝑝𝑀𝐿
𝑡

𝛿𝑡
− 𝛻 ∙ 𝛼𝑒𝑓𝑓∇ℎ

∗
− 𝜌∗𝒖∗ ∙ 𝑔 = 𝜀

※ Truncation error issue (solved)
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Results and conclusion

Heating wall 

307.75 K

Cooling wall 

288.15 K

• Natural convection simulation by OpenFOAM

• laminar flow, buoyantPimpleFoam

• unified square grids (200x200).

• x 11 acceleration for 1 time series prediction

Adiabaticwall 21/22



Summary and conclusions

“enlighten: to give knowledge or understanding”

OpenFOAM OpenFOAMNNs

Unified framework
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jgjeon41@jbnu.ac.kr

Thank you for listening!
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What is artificial intelligence?
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What is machine learning?

• artificial intelligence vs machine learning (neural networks)

✓ ‘Artificial intelligence’: the theory and development of computer systems able to perform tasks that normally require human 

intelligence, such as visual perception, speech recognition, decision-making, and translation between languages

✓ ‘Machine learning’: the use and development of computer systems that are able to learn and adapt without following explicit 

instructions, by using algorithms and statistical models to analyze and draw inferences from patterns in data.

✓ Simple example

Rule-based AI

Machine learning Machine learning

Rule-based AI
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What is deep learning?

• machine learning vs deep learning
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PINNs

(Cai, 2022)

• Example: Shrodinger equation

https://github.com/maziarraissi/PINNs/bl

ob/master/main/continuous_time_inferen

ce%20(Schrodinger)/Schrodinger.py
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PINNs

• Issues in PINNs

PINN FEM

Basis function NN (nonlinear)
Piecewise 

polynomial (linear)

Parameters Weights and biases Point values

Training points Mesh-free Mesh points

Governing equation Loss function Algebraic system

Parameter solver
Gradient-based 

optimization
Linear solver

PINN vs FEM

(arXiv.1907.04502)

1. Long-time integration

2. Complex problems

3. Sampling methods

4. Training dynamics

and much more …
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DeepONet
https://github.com/lululxvi/deeponet/blob/master/s

rc/deeponet_pde.py

• Example: antiderivative operator and diffusion-reaction PDE

𝑑𝑠(𝑥)

𝑑𝑥
= 𝑢 𝑥 , 𝑠 𝑥 = 𝑠0 + න

0

𝑥

𝑢(𝜏) 𝑑𝜏,

𝑮: 𝒖 𝒙 → 𝒔 𝒙 ,

input: 𝒖 𝒙 , 𝒚

output: 𝑮(𝒖)(𝒚)

𝜕𝑠

𝜕𝑡
= 𝐷

𝜕2𝑠

𝜕𝑥2 + 𝑘𝑠2 + 𝑢 𝑥 , 𝑥 ∈ 0,1 , 𝑡 ∈ (0,1]

𝑮: 𝒖 𝒙 → 𝒔 𝒙, 𝒕 ,
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DeepONet
https://github.com/lululxvi/deeponet/blob/master/s

rc/deeponet_pde.py

• Example: Navier-stokes equation

* For the ODEs and PDEs, the input function of the operators could be the boundary 

conditions, initial conditions or forcing terms (Lu, 2021).

Input: upstream disturbance
output: downstream perturbation field 
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PINN vs DeepONet
https://github.com/lululxvi/deeponet/blob/master/s

rc/deeponet_pde.py

(Hong, 2023)

• PINN

(+) easy to implement, applicable to various domains and equations

(+) unsupervised learning

(-) predict only a single PDE instance

(-) hard to impose BCs

• DeepONet

(+) predict multiple PDE instances

(+) can use modern DNN architecture

(-) supervised (in general), low accuracy on unseen data

(-) hard to impose BCs
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